ÉTUDE PAR SPECTROSCOPIE INFRAROUGE ET RAMAN DE L'ACTION DE BASES DE LEWIS SUR LE DI-t-BUTYLBÉRYLLIUM

II*. BASES OXYGÉNÉES: ÉTHER MÉTHYLIQUE ET ÉTHYLIQUE

JEAN MOUNIER

Laboratoire des Acides Minéraux associé au C.N.R.S., Université des Sciences et Techniques du Languedoc, 34060 Montpellier-Cédex (France) (Reçu le 6 décembre 1972)

SUMMARY

The IR and Raman spectra of coordination complexes t-Bu₂Be-OMe₂ and t-Bu₂Be-OEt₂ in the liquid phase, are given, and compared with the spectra of constituents. A frequencies assignment is suggested for the range 3000 to 200 cm⁻¹. The spectra show that the di-t-butylberyllium molecule has a non-centrosymmetrical structure. However only BeC₂ stretching frequencies are significantly lowered (30-40 cm⁻¹) by complexation, t-butyl groups being little modified. Significant shifts (30-50 cm⁻¹) are observed in the skeletal COC stretching modes for Lewis bases confirming a weakening of this bond after complexation. A new strong IR band appears at 650 cm⁻¹, the corresponding band in the Raman spectrum is polarized; it is assigned mainly to Be-O stretching, but slight mixing with BeC₂ stretching and COC bending is not excluded.

RÉSUMÉ

Les spectres d'absorption IR et de diffusion Raman des deux complexes de coordination t-Bu₂Be-OMe₂ et t-Bu₂Be-OEt₂, à l'état liquide, sont donnés et comparés à ceux des constituants. Une attribution des fréquences de vibration est proposée dans le domaine $3000-200 \text{ cm}^{-1}$. L'observation des spectres prouve que la molécule de di-t-butylbéryllium n'est plus centro-symétrique. Cependant, seules les fréquences de vibration BeC₂ sont fortement abaissées ($30-40 \text{ cm}^{-1}$), tandis que les groupements t-butyle sont peu modifiés par la complexation. En ce qui concerne la base de Lewis, des glissements significatifs ($30-50 \text{ cm}^{-1}$) sont observés sur les vibrations de valence du squelette COC, signe d'un affaiblissement de cette liaison. Enfin, le domaine $700-400 \text{ cm}^{-1}$ est particulièrement intéressant puisqu'il y apparaît une nouvelle bande à 650 cm^{-1} , intense et polarisée en Raman, vibration qui doit posséder un fort caractère de liaison BeC₂ et la déformation COC de même symétrie.

* Le premier mémoire de cette série est référé en réf. 9 dans la bibliographie.

INTRODUCTION

S'il existe des travaux systématiques sur les complexes trialcoylaluminiuméther^{1,2} et sur les complexes trialcoylbore-ammoniac^{3,4}, par contre, l'action de bases de Lewis sur les dialcoylbérylliens symétriques a été beaucoup moins étudiée. Coates et ses collaborateurs^{5,6} ont abordé cependant le problème dans leurs travaux généraux sur les alcoylbérylliens.

Dans un travail préliminaire sur la chimie de coordination du béryllium avec l'éther éthylique, l'ammoniac et la monométhylamine⁷, une première interprétation par spectroscopie infrarouge et Raman des vibrations des liaisons Be-O et Be-N a été proposée. Depuis, a été entreprise, une étude systématique de l'action de bases de Lewis sur le ditertiobutylbéryllium (t-Bu₂Be), au cours de laquelle ont été synthétisés les complexes de coordination 1/1 de formule t-Bu₂Be-XR_n, présentés dans le Tableau 1.

TABLEAU 1

COMPLEXES DE COORDINATION t-Bu₂Be-XR_n

R	X				
	0	S	N	Р	
CH3	Xª	×	(8)	(8)	
C ₂ H ₅	(9)	x	x	x	

" x Ce travail. () Composés déjà connus (réf.).

Dans ce mémoire, est proposée une attribution des fréquences de vibration des complexes formés entre le t-Bu₂Be et les éthers méthylique et éthylique compte tenu des attributions déjà faites sur t-Bu₂Be^{10,11} et sur les éthers^{12,13} et des travaux effectués par Josien et coll. sur les complexes formés entre des halogénures métalliques, Al et Mg notamment, et les éthers méthyliques et éthyliques¹⁴⁻¹⁶.

PRÉSENTATION GÉNÉRALE

Dans ce travail, seule une description détaillée des spectres IR et Raman observés est donnée, les comparaisons avec les autres complexes et la discussion seront faites dans le dernier article de cette série.

Les vibrations des groupements méthyl provenant de t- Bu_2Be et celles provenant de l'éther n'ont pas été différenciées systématiquement : seules les modifications des spectres dues à la formation de la liaison de coordination ont été mises en évidence.

Les vibrations du squelette du complexe $(C_3C)_2BeXR_2$ de symétrie C_s ont été étudiées; elles proviennent des vibrations des squelettes $(C_3C)_2Be$ et XR_2 de symétrie D_{3d} et C_{2v} . Le passage de ces deux groupes de symétrie au groupe C_s permet, comme le montre le Tableau 2, de donner la représentation des modes normaux de vibration des constituants du complexe. Il faut y ajouter la vibration de la liaison de coordination Be-X d'espèce A' et les deux déformations d'angle C_2BeXC_2 (A' et A''); au total on dénombre:

$$\Gamma_{C} = 19A' + 11A''$$

TABLEAU 2

CORRÉLATION ENTRE LES GROUPES DE SYMÉTRIE D_{3d} , C_{2v} ET C_3

ÉTUDE DU COMPLEXE 1/1 ENTRE t-Bu2Be ET ÉTHER MÉTHYLIQUE

La Fig. 1 est une représentation des spectres IR et Raman du complexe 1/1, comparés à ceux de t-Bu₂Be et de l'éther. L'activité sélective IR et Raman observée sur t-Bu₂Be a disparu, tandis que certaines raies de l'éther, se sont plus ou moins déplacées; enfin il y a apparition de bandes d'absorption supplémentaires liées aux vibrations du squelette C₂BeOR₂, donc à la liaison métal-coordinat.

ANALYSE DES SPECTRES

Domaine $4000-1300 \ cm^{-1}$

On retrouve les vibrations de valence et de déformation des liaisons CH des groupes méthyl de t-Bu₂Be et de l'éther, sans que l'on puisse les distinguer avec certitude, puisqu'il n'a pas été fait de deutériation partielle et totale de l'éther. Ces vibrations sont reportées dans le Tableau 3.

Domaine 1300–700 cm^{-1}

Dans ce domaine les vibrations des squelettes C_3C et OR_2 , sont attendues. Le premier fait observé est la diminution d'intensité de la vibration de valence antisymétrique en opposition de phase $v_a(CC_3)$ à 1240 cm⁻¹ par rapport à la correspondante dans le t-Bu₂Be à 1245 cm⁻¹. La composante à 1171 cm⁻¹ en phase est retrouvée ici, forte en Raman à 1172 cm⁻¹. Les vibrations symétriques correspondantes $v_s(CC_3)$ sont localisées à 860 et 810 cm⁻¹ (A'' et A') pour 870 et 813 cm⁻¹: ces fréquences n'ont donc pas été modifiées par la complexation. Il n'en est pas de même des fréquences de vibration de valence v(OC) de OR_2 qui sont fortement abaissées. Elles sont très faciles à repérer puisqu'elles apparaissent sous forme de bandes très intenses et larges en IR à 1062 cm⁻¹ pour la vibration de valence antisymétrique $v_a(C-O-C)$ (A'') et à 885 cm⁻¹ pour la vibration symétrique $v_s(C-O-C)$ (A'), très intense en Raman; dans l'éther libre les vibrations correspondantes sont respectivement à 1098 et 926 cm⁻¹.

TABLEAU 3

FRÉQUENCES DE VIBRATIONS OBSERVÉES DANS LE COMPLEXE t-Bu2Be-OMe2 À L'ÉTAT LIQUIDE

Complexe		Attribution	Éther (en solution)12	t-Bu ₂ Be
IR	Raman			(quinc)
3010 m				
2990 F	2980 tf		2985	2950
2950 F	2957 f		2951	2940
	2930 f 2902 f	v_a (CH ₃), v_s (CH ₃)	2918	2920
2870 m	2863 f		2886	2880
	2835 f		2865	2840
2815 F	2818 TF		2814	
2760 f	1	combinaison		
2690 f	ſ	combination		
	,			1485
1475 F			1479	1480
1460 m	1465 F		1461	1469
1448 m	1449 m	$\delta_{a}(CH_{3})$	1455	
1430 m	1442 m)		1453	1446
			1427	
				1400
1375 m	1385 t			1380
13501	13751	$\delta_{s}(CH_{3})$		
13301	13501			
13101				1200
1255 m	1260 +F	-(CH)	1244	1290
1233 11	1200 1	· (CC)	12.17	1245
12401	1240 11	$r_a(CU_3)$		1245
1204 11	1203 F 1194 TE(D)	$p(CH_3)$		1200
1051	1104 II(I) 1172 F	$\nu_{a}(CC_{3})(A')$		1171
1161 tf	11/21	$r(CH_{2})$	1170	
153 tf	1150 én	$r(CH_3) + r(COC)$	1170	
199 tf	1150 ср.	(0113) / 12(000)	11.2	
062 F	1060 f	$v_{r}(COC) + r(CH_{2})$	1098	1050
		·=(995
005 tf	1000 f	$\rho(CH_3)$		
962 f	955 f	$\rho(CH_3)$		970
930 tf	929 F	$\rho(CH_3)$		955
900 m				936
005	002 F		026	
00⊃ III 860 ć=	873 L	$v_{s}(COC)(A)$	920	970
811 m	810	$r_{s}(CC_{3})(A_{1})$		813
749 f	752 f	s(CC3) (A)		015
653 TE	648 F(P)	$v(BeO)(A') + \delta(COC)(A')$		
	612 m(P)	$\delta(C\cap C) (A') + \nu(Be\cap) (A')$	418	
537 m	530 tf	$v (BeC_{a}) (A'')$	TIU	580
500 f	503 F(P)	ν (BeC ₂) (A')		549
440 F	111 1 202	δ (CC ₂)		460
360 0	381 m	$\delta_{\alpha}(CC_{\alpha})$		373
280 f	281 tf	$\rho(CC_{3})$		270
	221 (D)			220

Il reste à attribuer un mode de vibration à la raie Raman à 1184 cm⁻¹ très intense et polarisée. Elle n'est pas due à une rotation CH₃ de l'éther puisqu'elle est retrouvée dans tous les spectres des complexes synthétisés, elle doit provenir de l'éclatement de la vibration de valence $v_a(CC_3)$ d'espèce E_g dans le t-Bu₂Be à 1170 cm⁻¹, en une composante de symétrie A' à 1184 cm⁻¹ et une composante A" à 1172 cm⁻¹.

Enfin, sans aucun changement, les fréquences 1205, 1000, 955 et 929 cm⁻¹ sont attribuées aux vibrations de rotation des groupements méthyl de t-Bu₂Be, et les fréquences 1260 et 1158 cm⁻¹ aux vibrations de rotation CH₃ de l'éther.

Domaine 700-400 cm^{-1}

C'est également un domaine très intéressant puisqu'y sont attendues notamment les vibrations du squelette C₂BeO plan, dû à l'hybridation probable sp^2 de Be, donc la liaison de coordination O-Be, la vibration de déformation du squelette de l'éther δ (C-O-C) et la liaison C-Be.

Le faible écart entre ces fréquences rend leur couplage possible. Le schéma ci-après Schéma 1 donne l'image classique¹⁷ de ces vibrations: v_1 est la vibration de valence où participe essentiellement la liaison Be-O d'espèce A', v_2 et v_3 les vibrations de valence antisymétrique (A'') et symétrique (A') où participe la liaison Be-C; notons que v_1 et v_3 peuvent être couplées avec la déformation δ (C-O-C) d'espèce A'.

SCHÉMA 1

Dans tous les spectres, à la même fréquence pour les deux éthers, il apparaît une bande à 650 cm⁻¹ très intense, symétrique, de base assez évasée et totalement polarisée. Elle glisse de 60 cm⁻¹ vers les basses fréquences, pour les sulfures correspondants; ceci conduit à l'attribuer à la vibration v_1 tandis que la déformation $\delta(C-$ O-C) serait la raie à 612 cm⁻¹ également polarisée, et que 537 et 500 cm⁻¹ seraient dues aux vibrations v_2 et v_3 , la dernière étant polarisée et très intense en Raman, la première très intense en infrarouge, faible en Raman.

Domaine inférieur à 400 cm^{-1}

On retrouve les déformations δ_a du groupe CC₃ à 440 et 360 cm⁻¹ ainsi que la rotation CC₃ à 280 cm⁻¹, peu perturbées par la complexation tandis que la déformation δ_s (CC₃) semble légèrement modifiée à 231 cm⁻¹ comparée au t-Bu₂Be pur à 220 cm⁻¹.

ÉTUDE DU COMPLEXE 1/1 ENTRE t-Bu₂Be ET L'ÉTHER ÉTHYLIQUE

La Fig. 2 est une représentation des spectres IR et Raman du complexe 1/1, ainsi que du t-Bu₂Be et de l'éther éthylique. Comparés aux spectres précédents, ils sont plus compliqués, car il y intervient, en plus, les vibrations de valence et de déformation des liaisons C-C liées au squelette de l'éther. On peut cependant proposer une attribution des absorptions observées, compte tenu que les vibrations de valence relatives au squelette CC₃ doivent apparaître aux mêmes fréquences, tandis que celles relatives au squelette OR₂ doivent être modifiées de façon appréciable.

Domaine 4000–1300 cm⁻¹

La complexation modifie peu ce domaine. Le massif de vibration de valence des liaisons C-H subit cependant quelques changements en IR; la bande à 2850 cm^{-1} glisse à 2830 cm^{-1} , tandis qu'en Raman elle passe de 2840 cm^{-1} à 2820 cm^{-1} . Par ailleurs, il apparaît également des raies nouvelles à $2980 \text{ et } 2930 \text{ cm}^{-1}$ dues aux vibrations des groupements méthyl de l'éther. Il en est de même pour les vibrations de déformations des liaisons C-H où seules, des modifications d'intensité sont observées, notamment à 1470 cm^{-1} en Raman.

Dans la région 1350–1290 cm⁻¹, on retrouve les balancements, dans le plan et hors du plan de la molécule, des groupements CH_2 de l'éther.

Fig. 2. (F) Spectre IR de OEt₂ à l'état liquide. (G) Spectre IR de t-Bu₂Be à l'état liquide. (H) Spectre IR du complexe t-Bu₂-OEt₂ liquide. (I) Spectre Raman de OEt₂ liquide. (J) Spectre Raman de t-Bu₂Be liquide. (K) Spectre Raman du complexe t-Bu₂Be-OEt₂ liquide.

Domaine 1300-700 cm⁻¹

Les vibrations de valence du groupe CC_3 de t-Bu₂Be ne sont pas affectées par la complexation. Le Tableau 4 reproduit les différentes attributions proposées.

On retrouve expérimentalement les dix raies attendues entre 1200 et 700 cm⁻¹ pour l'éther, c'est-à-dire quatre vibrations du squelette, quatre rotations CH_3 et deux rotations CH_2 , ce qui prouve que l'éther complexé se présente ici sous un seul conformère, comme à l'état solide.

Il convient d'insister sur les vibrations de valence de la liaison C-O. La vibration $v_a(C-O-C)$ est attribuée à la fréquence 1044 cm⁻¹ très intense en IR; en général clle est couplée avec un balancement CH₃ de même symétrie à 1095 cm⁻¹, assez modifié lui aussi par la complexation. La vibration $v_s(C-O-C)$, polarisée, apparaît à 795 cm⁻¹. Ces deux vibrations sont abaissées respectivement de 33 et 55 cm⁻¹ par rapport aux fréquences observées dans l'éther libre, ce qui est caractéristique d'une modification sensible du champ de force de cette molécule.

TABLEAU 4

FRÉQUENCES DE VIBRATION OBSERVÉES DANS LE COMPLEXE t-Bu₂Be-OEt₂ À L'ÉTAT LIQUIDE

Complexe		Attribution	Éther ¹³		t-Bu ₂ Be ⁹
IR	Raman		IR	Raman	
3000 f		v.(CH ₂)			
2960 F	2980 m		2979	2980	2950
2940 F	2930 F		2930	2935	2940
2920 F	2913 m	$v'_{1}v_{2}$ (CH ₂)	2871	2873	2920
2880 m	2885 f	ν (CH ₂)			2880
2830 F	2840 f 2820 TF	v _s (CH ₂)			2840
2785 f					
2705 f					
			1498	1498	1485
1480 F	1470)		1480		1480
1460 m	1460	$\delta_{-}(CH_{-})$	1444	1459	1469
1100 20	1440	°a(~3)		1450	1446
		<u>.</u>	1387	2.00	1400
1370 F	1380	እ <i>(</i> ርዝ)	1368		1380
13701	1350	<i>o</i> _s (CII ₃)	1251		1000
15201	1330)		1551		
1000 5	1310	$\omega(CH_2)$	1270	1071	12002
12901	1290	$I(CH_2)$	1279	1271	1290?
12/51	1040 5	(66.)	1200	1255	1045
12401	1240 !	$v_{a}(CC_{3})$			1245
	1205 m	$\rho(CH_3)$			1205
1190 F	1188 TF(P)	$v_a(CC_3)A' + r(CH_3)$	1170		
1175 m	1170 m	$v_a''(CC_3)A''$			1170
1148 f		г(CH ₃)	1152	1154	
	1105 f	r(CH ₃)	1149		
1095 f	1095 m	$r(CH_3) + v_s(COC)A''$	1120	1124	
1083 m		r(CH ₃)			1050
					(masqué)
1044 TF	1050 f	$v_{s}(COC) + r(CH_{3})$	1085		
1010 tf	1005 f	$v_{s}(CC_{3})A'$	1044	1044	
998 f		$\rho(CH_3)$			995
960 f		$\rho(CH_3)$.955
930 f	935 m	$\rho(CH_3)$			936
910 f		, , , , , , , , , , , , , , , , , , , ,			
875 TF	884 f	$v_{a}(CC)A'' + v_{s}(CC_{3})A''$	940	936	870 (masquė)
835 f	840 m	r(CH ₂)	822		
813 m	818 F(P)	$v_{*}(CC_{3})A'$			813
790 f	795 f(P)	v.(COC)A'	842	846	
755 f		r(CH ₂)	812	793	
655 F	652 F(P)	$v(BeO)A' + \delta(COC)A'$			
0001	547 m(P)	δ squelette éther			
540 m	(masqué)	$v(BeC_{-})A''$			580
526 f	(masque) 520 m(P)	v(BeC)A'			549
520 t	505 +f	.(1002)/1			2,72
A76		S canalatta áthar		400	
4/5 m	460 I(P)	σ squelette ettier	440	477	460
445 I	205.5	$\mathcal{O}_{a}(\mathbb{CC}_{3})$	940	440	400
1 585	1 285	$o_{\mathbf{a}}(\mathbf{UU}_{3})$	518	245	212
	240 m	0 ₅ (CC ₃)	245	245	220

D'un autre côté, les vibrations $v_s(CC)$ et $v_a(CC)$ à 1944 et 935 cm⁻¹ dans l'éther libre ne sont plus qu'à 1010 et 875 cm⁻¹ dans le complexe.

Les rotations liées aux groupements méthyl de t-Bu₂Be à 1205, 1005, 970 et 935 cm⁻¹, sont inchangées, tandis que celles liées à l'éther, retrouvées à 1148, 1105 et 1095 cm⁻¹ sont légèrement déplacées, celle observée à 1190 cm⁻¹ est noyée dans le massif de vibrations à 1200 cm⁻¹.

Les rotations liées aux groupements CH_2 de l'éther sont retrouvées à 840 et 755 cm⁻¹.

Domaine 700-400 cm⁻¹

Dans ce domaine il y a cinq bandes en absorption et en diffusion. La première à 650 cm^{-1} très intense en IR et en Raman a la même forme que celle trouvée dans le complexe précédent ; elle est polarisée donc attribuée au mode de vibration v_1 totalement symétrique (A'). Les vibrations v_2 (A'') et v_3 (A') sont observées à 540 cm⁻¹ et 525 cm⁻¹, la première est intense en IR, très faible en Raman, et la seconde faible en IR, assez forte en Raman et polarisée.

Cette partie du spectre est compliquée par les vibrations de déformation du squelette de l'éther qui apparaissent à 547 et 480 cm^{-1} et qui sont polarisées en Raman.

Domaine inférieur à 400 cm^{-1}

Ce domaine est identique à celui qui a été discuté pour le complexe avec l'éther méthylique; notons seulement un glissement un peu plus prononcé de la fréquence de déformation $\delta_{s}(CC_{3})$ à 240 cm⁻¹.

DISCUSSION

C'est la première fois qu'une telle attribution est proposée. Les deux points délicats sont, d'une part la modification du domaine $1200-1100 \text{ cm}^{-1}$ par rapport à l'acide de Lewis libre, très visible en Raman, et d'autre part, l'attribution de la fréquence de vibration relative à la liaison de coordination dans le domaine 700-400 cm⁻¹.

Abaissement de symétrie- $|vibration v_a(CC_3)|$

L'apparition de la raie intense et polarisée à 1184 cm^{-1} est difficilement explicable. Elle est liée au t-Bu₂Be puisqu'elle apparaît dans tous les composés préparés : ce n'est donc pas une rotation d'un groupement méthyl de l'éther, en général de moindre intensité.

Deux explications sont possibles: soit la vibration de valence antisymétrique $v_a(CC_3)$ dans un groupement t-butyle donne avec le t-Bu₂Be deux composantes en phase et en opposition de phase $v_a(E_u)$ et $v_a(E_g)$. Par abaissement de symétrie, ces deux composantes peuvent éclater à leur tour en deux composantes chacunes actives en IR et Raman.

$$D_{3d} \qquad C_s$$

$$v_a(CC_3)(E_u) \underbrace{v_a(A')}_{v_a(A'')}$$

$$v_a(CC_3)(E_g) \underbrace{v_a'(A')}_{v_a'(A'')}$$

Si $v_a(CC_3)(E_u)$ à 1245 cm⁻¹, glisse par la complexation à 1205 cm⁻¹, la vibration de balancement CH₃ du t-Bu₂Be à 1205 cm⁻¹, d'espèce (A_{1g}) peut glisser à son tour à 1185 cm⁻¹. Cette première explication est peu probable, car dans ce cas, il serait étonnant que la vibration de valence symétrique $v_s(CC_3)$ à 810 cm⁻¹ ne se déplace pas également, or aucun glissement n'est observé pour celle-ci. De plus, le glissement de 20 cm⁻¹ de la vibration de balancement CH₃ impliquerait un couplage avec la vibration $v_a(CC_3)$, qui n'est pas de même espèce de symétrie; soit, la vibration $v_a(CC_3)$ d'espèce E_g , à 1170 cm⁻¹ dans le t-Bu₂Be, conduit à un éclatement identique au précédent, sous l'effet de l'abaissement de symétrie. Dans ce cas, la vibration $v'_a(A')$ apparaîtrait à 1184 cm⁻¹ et $v''_a(A'')$ à 1172 cm⁻¹.

Vibration BeO

Dans le domaine 700-400 cm⁻¹ intervient les trois vibrations de valence du squelette C_2 BeO données dans le Schéma 1.

Il intervient également les vibrations de déformation liées à l'éther, on doit s'attendre à des couplages, notamment entre les vibrations v_1 , v_2 et la déformation symétrique δ_s (COC). On verra dans le mémoire suivant que lors du passage de l'éther au sulfure, les trois vibrations v_1 , v_2 et v_3 sont déplacées vers les basses fréquences de 60 cm⁻¹ pour la première, de 30 cm⁻¹ environ pour les deux dernières, ce qui met en évidence leur couplage. La première à 655 cm^{-1} est donc plus sensible à la modification apportée par le soufre, ce mode doit donc mettre en jeu un fort pourcentage de liaison métal-coordinat. Les attributions de v_2 et v_3 ont été faites, compte tenu de la polarisation des raies Raman, ainsi que de l'intensité plus ou moins importante de ces absorptions en infrarouge ou en Raman.

CONCLUSION

Les spectres IR et Raman des complexes formés entre le t- Bu_2Be et les éthers méthylique et éthylique s'interprètent bien dans l'hypothèse des vibrations de groupe. On observe une diminution d'intensité des fréquences liées aux vibrations de t- Bu_2Be qui se comporte ici, comme un acide de Lewis de force comparable à celle du chlorure de béryllium et des halogénures de magnésium.

Le Tableau 5 rassemble les fréquences de vibration de valence du squelette des éthers et de la liaison métal-oxygène, les premières citées subissent des glissements significatifs lors de la formation des complexes, elles y sont comparées à celles de composés organoaluminiques.

L'éther réagit comme une base "dure" vis-à-vis du béryllium qui est lui-même un acide "dur", ce qui fait un complexe particulièrement stable, avec un réarrangement électronique assez important autour de la liaison Be–O. Ceci se traduit par une fréquence supérieure à celle trouvée dans la littérature pour des éléments voisins Mg, B, Al (655 cm⁻¹ pour 400 et 550 cm⁻¹ en général), ce qui reflète en partie la force de cette liaison de coordination.

PARTIE EXPÉRIMENTALE

Les produits ont été synthétisés selon des méthodes déjà décrites^{7,18}. Les appareils utilisés, ainsi que la cellule ont été cités dans un article précédent¹¹. Signalons que

TABLEAU 5

	v _a (COC)	$v_s(COC)$	v(M−O)
OMe,	1095	922	
t-Bu,Be-OMe,	1062	890	653
Me ₁ Al-OMe ₂ ²	1046	891	473
Et ₃ Al-OMe ₂ ²	1049	886	472
OEt,	1085	842	
t-Bu_Be-OEt,	1045	790	650
Me-Al-OEt ²	1036		462
Et ₃ Al-OEt ₂ ²	1035		457

FRÉQUENCES DE VIBRATION DE VALENCE DU SQUELETTE DE L'ÉTHER ET DE LA LIAI-SON MÉTAL-OXYGÈNE

les spectres IR dans les basses fréquences ont été pris à l'aide d'un spectrographe Perkin-Elmer 180.

REMERCIEMENTS

Nous remercions vivement Monsieur le Professeur Potier et Madame Potier, Maître de Recherches au C.N.R.S., pour les discussions fructueuses que nous avons eues ensembles.

BIBLIOGRAPHIE

- 1 E. G. Hoffmann, Z. Elektrochem., 66 (1960) 661.
- 2 S. Tokeda et R. Tarao, Bull. Chem. Soc. Jap., 38 (1965) 1567.
- 3 D. Goubeau et H. J. Becker, Z. Anorg. Allg. Chem., 268 (1952) 1.
- 4 M. Siebert, Z. Anorg. Allg. Chem., 268 (1952) 17.
- 5 N. A. Bell, G. E. Coates et J. W. Emsley, J. Chem. Soc., A, (1966) 49.
- 6 N. A. Bell et G. E. Coates, J. Chem. Soc., A, (1965) 692.
- 7 J. Mounier, Thèse, Montpellier, 1971.
- 8 G. E. Coates et P. D. Roberts, J. Chem. Soc. A., (1968) 2651.
- 9 G. E. Coates et F. Glockling, J. Chem. Soc., (1954) 2526.
- 10 G. E. Coates, P. D. Roberts et A. J. Dawns, J. Chem. Soc., A, (1967) 1085.
- 11 J. Mounier, J. Organometal. Chem., 38 (1972) 7.
- 12 J. P. Perchard, M. T. Forel et M. L. Josien, J. Chem. Phys., 61 (1964) 632; J. Chem. Phys., 61 (1964) 660.
- 13 J. P. Perchard, Thèse, Paris, 1968.
- 14 J. Derouault et M. T. Forel, Spectrochim. Acta, 25 (1969) 67.
- 15 J. Guillermet, Thèse, Paris, 1970.
- 16 H. Wieser, W. G. Laidlaw, P. J. Kruger et H. Fuhrer, Spectrochim. Acta, 24 A (1968) 1055.
- 17 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn. Wiley-Interscience, New York, 1963.
- 18 E. L. Head, C. E. Holley et S. W. Rabideau, J. Amer. Chem. Soc., 79 (1957) 3687.